CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold

Joakim Löfgren (Institutionen för fysik, Material- och ytteori (Chalmers)) ; Henrik Grönbeck (Institutionen för fysik, Kemisk fysik (Chalmers)) ; Kasper Moth-Poulsen (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Paul Erhart (Institutionen för fysik, Material- och ytteori (Chalmers))
Journal of Physical Chemistry C (1932-7447). Vol. 120 (2016), 22, p. 12059.
[Artikel, refereegranskad vetenskaplig]

Alkanethiolate monolayers on gold are important both for applications in nanoscience as well as fundamental studies of adsorption and self-assembly at metal surfaces. While considerable experimental effort has been put into understanding the phase diagram of these systems, theoretical work based on density functional theory (DFT) has long been hampered by the inability of conventional exchange-correlation functionals to describe dispersive interactions. In this work, we combine dispersion-corrected DFT calculations using the new vdW-DF-CX functional with the ab initio thermodynamics method to study the stability of dense standing-up and low-coverage lying-down phases on Au(111). We demonstrate that the lying-down phase has a thermodynamic region of stability starting from thiolates with alkyl chains consisting of n ? 3 methylene units. This phase emerges as a consequence of a competition between dispersive chain-chain and chain-substrate interactions, where the strength of the latter varies more strongly with n. A phase diagram is derived under ultrahigh-vacuum conditions, detailing the phase transition temperatures of the system as a function of the chain length. The present work illustrates that accurate ab initio modeling of dispersive interactions is both feasible and essential for describing self-assembled monolayers.



Denna post skapades 2016-07-05. Senast ändrad 2016-10-25.
CPL Pubid: 238957

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)




Projekt

Denna publikation är ett resultat av följande projekt:


Single Molecule Nano Electronics (SIMONE) (EC/FP7/337221)