CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Percolation Diffusion

Torbjörn Lundh (Institutionen för matematik)
Stochastic Processes and their Applications (0304-4149). Vol. 95 (2001), 2, p. 235-244.
[Artikel, refereegranskad vetenskaplig]

Let a Brownian motion in the unit ball be absorbed if it hits a set generated by a radially symmetric Poisson point process. The point set is “fattened” by putting a ball with a constant hyperbolic radius on each point. When is the probability non-zero that the Brownian motion hits the boundary of the unit ball? That is, manage to avoid all the Poisson balls and “percolate diffusively” all the way to the boundary. We will show that if the bounded Poisson intensity at a point z is ν(d(0,z)), where d(· ,·) is the hyperbolic metric, then the Brownian motion percolates diffusively if and only if $\nu \in L^1$.

Nyckelord: Percolation, Brownian motion, Poisson process, hyperbolicgeometry, minimal thinness

Denna post skapades 2006-12-05. Senast ändrad 2014-09-02.
CPL Pubid: 23854


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Matematisk statistik

Chalmers infrastruktur