CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Geodesics on Riemann Surfaces and their corresponding Limit Points

Torbjörn Lundh (Institutionen för matematik)
Michigan Mathematical Journal (0026-2285). Vol. 51 (2003), p. 279-304.
[Artikel, refereegranskad vetenskaplig]

The motivation of this paper is twofold. We address the following question, left open by the author in an earlier paper \cite{asf} dealing with a connection of discrete groups and potential theory. Let $\n$ be the set on the unit sphere where a union of hyperbolic spheres centered at each orbitpoint of a discrete group is not minimally thin.{\em Is $\n$ equal to the conical limit set?} We will show that this is not true in general by constructing a counterexample in Section \ref{sec.jg}. The construction utilizes results derived while considering a problem, suggested to the author by Chris Bishop, about generalizing the well known result which gives the correspondence between returning geodesics on Riemann manifolds and conical limit points.

Nyckelord: Discrete group, Fuchsian group, Kleinian group, horocycle, limit set, non-tangential limit set, minimal thinness

Denna post skapades 2006-12-05. Senast ändrad 2014-09-02.
CPL Pubid: 23849


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematik (2002-2004)


Matematisk analys

Chalmers infrastruktur