CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A rational derivation of dynamic higher order equations for functionally graded micropolar plates

Hossein Abadikhah (Institutionen för tillämpad mekanik, Dynamik) ; Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik)
Composite structures (0263-8223). Vol. 153 (2016), p. 234-241.
[Artikel, refereegranskad vetenskaplig]

The dynamics of functionally graded micropolar plates is considered. The derivation process is based on power series expansions in the thickness coordinate. Using the three-dimensional equations of motion for micropolar continuum, variationally consistent equations of motion and end boundary conditions are derived in a systematic fashion up to arbitrary order. Numerical results are presented for simply supported plates using different material distributions for both low and high order truncation orders. These results illustrate that the present approach renders benchmark solutions provided higher order truncations are used, and act as engineering plate equations using low order truncation.

Nyckelord: Series expansion; Plate equation; Micropolar; Functionally graded; Eigenfrequency



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-06-14. Senast ändrad 2016-09-16.
CPL Pubid: 237691

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik

Ämnesområden

Materialvetenskap
Fastkroppsmekanik

Chalmers infrastruktur