CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Beta-Beta Achievability Bound with Applications

Wei Yang ; Austin Collins ; Giuseppe Durisi (Institutionen för signaler och system, Kommunikationssystem) ; Yury Polyanskiy ; Vincent Poor
IEEE International Symposium on Information Theory - Proceedings (2157-8095). p. 2669-2673. (2016)
[Konferensbidrag, refereegranskat]

A channel coding achievability bound expressed in terms of the ratio between two Neyman-Pearson β functions is proposed. This bound is the dual of a converse bound established earlier by Polyanskiy and Verdu ́ (2014). The new bound turns out to simplify considerably the analysis in situations where the channel output distribution is not a product distribution, for example due to a cost constraint or a structural constraint (such as orthogonality or constant composition) on the channel inputs. Connections to existing bounds in the literature are discussed. The bound is then used to derive 1) the channel dispersion of additive non-Gaussian noise channels with random Gaussian codebooks, 2) the channel dispersion of an exponential-noise channel, 3) a second-order expansion for the minimum energy per bit of an AWGN channel, and 4) a lower bound on the maximum coding rate of a multiple-input multiple-output Rayleigh-fading channel with perfect channel state information at the receiver, which is the tightest known achievability result.

Nyckelord: Channel state information, Codes (symbols), Communication channels (information theory), Decoding, Dispersions, Fading channels, Gaussian distribution, Information theory, MIMO systems, Rayleigh fading, Trellis codes, White noise



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-05-30. Senast ändrad 2017-02-08.
CPL Pubid: 237064

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)