CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Counting rational points on smooth cubic curves

Manh Hung Tran (Institutionen för matematiska vetenskaper, matematik)

We use a global version of Heath-Brown's p-adic determinant method developed by Salberger to give upper bounds for the number of rational points of height at most B on non-singular cubic curves defined over Q. The bounds are uniform in the sense that they only depend on the rank of the corresponding Jacobian.

Nyckelord: Elliptic curves, Diophantine equation.

Denna post skapades 2016-05-27. Senast ändrad 2016-10-18.
CPL Pubid: 236974


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur