CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Uniform bounds for rational points on cubic hypersurfaces

Per Salberger (Institutionen för matematiska vetenskaper, matematik)
Arithmetic and Geometry p. 401-421. (2015)
[Kapitel]

© Cambridge University Press 2015. We use a global version of Heath-Brown’ p-adic determinant method to show that there are ON,ε(Bdim X + 1/7 + ε) rational points of height at most B on a geometrically integral variety X ⊂ PN of degree three defined over Q. By the same method we also show that there are Oε(B12/7 + ε) rational points of height at most B outside the lines on any cubic surface in P3.

Nyckelord: Number Theory, Geometry and Topology



Denna post skapades 2016-05-12. Senast ändrad 2016-07-05.
CPL Pubid: 236437

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur