CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Simple Method for Subspace Estimation with Corrupted Columns

V. Larsson ; C. Olsson ; Fredrik Kahl (Institutionen för signaler och system, Bildanalys och datorseende)
15th IEEE International Conference on Computer Vision Workshops, ICCVW 2015; Santiago; Chile; 11 December 2015 through 18 December 2015 (1550-5499). Vol. 2016-February (2016), p. 841-849.
[Konferensbidrag, refereegranskat]

This paper presents a simple and effective way of solving the robust subspace estimation problem where the corruptions are column-wise. The method we present can handle a large class of robust loss functions and is simple to implement. It is based on Iteratively Reweighted Least Squares (IRLS) and works in an iterative manner by solving a weighted least-squares rank-constrained problem in every iteration. By considering the special case of column-wise loss functions, we show that each such surrogate problem admits a closed form solution. Unlike many other approaches to subspace estimation, we make no relaxation of the low-rank constraint and our method is guaranteed to produce a subspace estimate with the correct dimension. Subspace estimation is a core problem for several applications in computer vision. We empirically demonstrate the performance of our method and compare it to several other techniques for subspace estimation. Experimental results are given for both synthetic and real image data including the following applications: linear shape basis estimation, plane fitting and non-rigid structure from motion.

Nyckelord: Closed-form solutions , Computer vision , Convergence , Estimation , Optimization , Robustness , Shape

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-05-11. Senast ändrad 2016-08-26.
CPL Pubid: 236240


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Bildanalys och datorseende (2013-2017)


Informations- och kommunikationsteknik
Elektroteknik och elektronik
Medicinsk bildbehandling

Chalmers infrastruktur