CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Travelling wave analysis of a mathematical model of glioblastoma growth

Philip Gerlee (Institutionen för matematiska vetenskaper, matematik) ; Sven Nelander
Mathematical Biosciences (0025-5564). Vol. 276 (2016), p. 75-81.
[Artikel, refereegranskad vetenskaplig]

In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, PLoS Comp. Bio., 8(6) 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.

Nyckelord: Cancer modelling, Cell-based model, Travelling waves, Glioblastoma


Preprint available: http://arxiv.org/abs/1305.5036



Denna post skapades 2016-05-02. Senast ändrad 2016-07-05.
CPL Pubid: 235802

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Tillämpad matematik
Cancer och onkologi

Chalmers infrastruktur