CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A generalized finite element method for linear thermoelasticity

Anna Persson (Institutionen för matematiska vetenskaper)
Göteborg : Chalmers University of Technology, 2016. - 118 s.

In this thesis we develop a generalized finite element method for linear thermoelasticity problems, modeling displacement and temperature in an elastic body. We focus on strongly heterogeneous materials, like composites. For classical finite element methods such problems are known to be numerically challenging due to the rapid variations in the data. The method we propose is based on the local orthogonal decomposition technique introduced by M{\aa}lqvist and Peterseim (Math. Comp., 83(290): 2583--2603, 2014). In short, the idea is to enrich the classical finite element nodal basis function using information from the diffusion coefficient. Locally, these basis functions have better approximation properties than the nodal basis functions. The papers included in this thesis first extends the local orthogonal decomposition framework to parabolic problems (Paper I) and to linear elasticity equations (Paper II). Finally, using the theory developed in these papers, we address the linear thermoelastic system (Paper III).

Nyckelord: Thermoelasticity, parabolic equations, linear elasticity, multiscale, composites, generalized finite element, local orthogonal decomposition, a priori analysis

Denna post skapades 2016-05-02. Senast ändrad 2016-05-11.
CPL Pubid: 235750


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Numerisk analys

Chalmers infrastruktur


Datum: 2016-05-27
Tid: 10:15
Lokal: Euler
Opponent: Daniel Peterseim