CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Classification of quantum groups and Lie bialgebra structures on sl(n, F). Relations with Brauer group

Alexander Stolin (Institutionen för matematiska vetenskaper) ; Iulia Pop (Institutionen för matematiska vetenskaper)
Advances in Mathematics (0001-8708). Vol. 293 (2016), p. 324-342.
[Artikel, refereegranskad vetenskaplig]

Given an arbitrary field F of characteristic 0, we study Lie bialgebra structures on sl(n,F), based on the description of the corresponding classical double. For any Lie bialgebra structure.5, the classical double D(sl(n, F), delta) is isomorphic to sl(n,F) circle times(F) A, where A is either F[epsilon], with epsilon(2) = 0, or F circle plus F or a quadratic field extension of F. In the first case, the classification leads to quasi-Frobenius Lie subalgebras of sl(n,F). In the second and third cases, a Belavin-Drinfeld cohomology can be introduced which enables one to classify Lie bialgebras on sl(n,F), up to gauge equivalence. The Belavin Drinfeld untwisted and twisted cohomology sets associated to an r-matrix are computed. For the Cremmer-Gervais r-matrix in sl(3), we also construct a natural map of sets between the total Belavin-Drinfeld twisted cohomology set and the Brauer group of the field F.

Nyckelord: Quantum group, Lie bialgebra, Classical double, r-matrix, Admissible triple, Quadratic field, Brauer, algebras, Mathematics

Denna post skapades 2016-04-26. Senast ändrad 2016-06-02.
CPL Pubid: 235220


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur