CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism

M. Fazlali ; Mykola Dvornik ; Ezio Iacocca (Institutionen för fysik, Teoretisk fysik (Chalmers)) ; Philipp Dürrenfeld ; Mohammad Haidar ; Johan Åkerman ; Randy K. Dumas
Physical Review B. Condensed Matter and Materials Physics (1098-0121). Vol. 93 (2016), p. 134427.
[Artikel, refereegranskad vetenskaplig]

This work provides a detailed investigation of the measured in-plane field-swept homodyne-detected ferromagnetic resonance (FMR) spectra of an extended Co/Cu/NiFe pseudo-spin-valve stack using a nanocontact (NC) geometry. The magnetodynamics are generated by a pulse-modulated microwave current, and the resulting rectified dc mixing voltage, which appears across the NC at resonance, is detected using a lock-in amplifier. Most notably, we find that the measured spectra of the NiFe layer are composite in nature and highly asymmetric, consistent with the broadband excitation of multiple modes. Additionally, the data must be fit with two Lorentzian functions in order to extract a reasonable value for the Gilbert damping of the NiFe. Aided by micromagnetic simulations, we conclude that (i) for in-plane fields the rf Oersted field in the vicinity of the NC plays the dominant role in generating the observed spectra, (ii) in addition to the FMR mode, exchange-dominated spin waves are also generated, and (iii) the NC diameter sets the mean wave vector of the exchange-dominated spin wave, in good agreement with the dispersion relation.



Denna post skapades 2016-04-26. Senast ändrad 2016-07-05.
CPL Pubid: 235199

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik (GU) (GU)
Institutionen för fysik, Teoretisk fysik (Chalmers)

Ämnesområden

Magnetism
Övrig elektroteknik, elektronik och fotonik
Nanoteknik

Chalmers infrastruktur

 


Projekt

Denna publikation är ett resultat av följande projekt:


Magnonics Using Spin Torque, spin caloritronics, And Nanoplasmonic engineerinG (MUSTANG) (EC/FP7/307144)