CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Directional decomposition of the acoustic wave equation for fluids and metafluids in spherical geometries, with application to transformational acoustics

Peter Olsson (Institutionen för tillämpad mekanik, Dynamik)
Inverse Problems (0266-5611). Vol. 32 (2016), 3,
[Artikel, refereegranskad vetenskaplig]

A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.

Nyckelord: wave splitting, transformational acoustics, cloaking, metafluid, inverse scattering, time domain, viscoelastic media, telegraph equation, cloaking theory, 3 dimensions, Mathematics, Physics

Denna post skapades 2016-04-22.
CPL Pubid: 235063


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)


Strömningsmekanik och akustik

Chalmers infrastruktur