CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Ambient temperature growth of mono- and polycrystalline NbN nanofilms and their surface and composition analysis

Sascha Krause (Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling) ; Victor Afanas'ev ; Vincent Desmaris (Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling) ; Denis Meledin (Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling) ; Alexey Pavolotsky (Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling) ; Victor Belitsky (Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling) ; A. Lubenschenko ; A Batrakov ; Mariusz Rudzinski ; E. Pippel
IEEE transactions on applied superconductivity (1051-8223). Vol. 26 (2016), 3,
[Artikel, refereegranskad vetenskaplig]

This paper presents the studies of high-quality 5 nm thin NbN films deposited by means of reactive DC magnetron sputtering at room temperature. The deposition without substrate heating offers major advantages from a processing point of view and motivates the extensive composition- and surface characterization and comparison of the present films with high quality films grown at elevated temperatures. Monocrystalline NbN films have been epitaxially grown onto hexagonal GaN buffer-layers (0002) and show a distinct, low defect interface as confirmed by High-Resolution TEM. The critical temperature Tc of films on the GaN buffer-layer reached 10.4 K. Furthermore, a poly-crystalline structure was observed on films grown onto Si (100) substrates, exhibiting a Tc of 8.1 K albeit a narrow transition from the normal to the superconducting state. X-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy verified that the composition of NbN was identical irrespectively of applied substrate heating. Moreover, the native oxide layer at the surface of NbN has been identified as NbO2 and thus, is in contrast to the Nb2O5, usually claimed to be formed at the surface of Nb when exposed to air. These findings are of significance since it was proven the possibility of growing epitaxial NbN onto GaN buffer layer in the absence of high temperatures hence paving the way to employ NbN in more advanced fabrication processes involving a higher degree of complexity. The eased integration and employment of lift-off techniques could, in particular, lead to improved performance of cryogenic ultra-sensitive terahertz electronics.

Nyckelord: Epitaxy; GaN; NbN; sputtering; ultrathin film; niobium nitride films; oxidation; Engineering; Physics

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-04-22. Senast ändrad 2016-06-21.
CPL Pubid: 235038


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Avancerad mottagarutveckling (2010-2017)


Nanovetenskap och nanoteknik

Chalmers infrastruktur

NFL/Myfab (Nanofabrication Laboratory)