CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.

Furqan A. Shah ; Omar Omar ; Felicia Suska ; Anders Snis ; Aleksandar Matic (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Lena Emanuelsson ; Birgitta Norlindh ; Jukka Lausmaa ; Peter Thomsen ; Anders Palmquist
Acta Biomaterialia (1742-7061). Vol. 36 (2016), May, p. 296-309.
[Artikel, refereegranskad vetenskaplig]

In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications.

Nyckelord: 3D printing, Additive manufacturing, Electron beam melting, Osseointegration, Alloy, Cobalt chromium, Titanium



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-04-21. Senast ändrad 2016-06-27.
CPL Pubid: 234987

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kliniska vetenskaper, sektionen för anestesi, biomaterial och ortopedi, Avdelningen för biomaterialvetenskap (GU)
Institutionen för fysik, Kondenserade materiens fysik (Chalmers)

Ämnesområden

Materialvetenskap
Biomaterial

Chalmers infrastruktur