CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

Evangelos Siminos (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; M Grech ; Benjamin Svedung Wettervik (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Tünde Fülöp (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers))
New Journal of Physics (1367-2630). Vol. 19 (2017), p. 123042.
[Artikel, refereegranskad vetenskaplig]

We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring (HB) and ion acceleration. It is demonstrated using particle-in-cell simulations and an analysis of separatrices in single-electron phase-space, that ion motion can suppress fast electron escape to the vacuum, which would otherwise lead to transition to the relativistic transparency regime. A simple analytical estimate shows that for large laser pulse amplitude the time scale over which ion motion becomes important is much shorter than usually anticipated. As a result of enhanced ion mobility, the threshold density above which HB occurs decreases with the charge-to-mass ratio. Moreover, the transition threshold is seen to depend on the laser temporal profile, due to the effect that the latter has on electron heating. Finally, we report a new regime in which a transition from relativistic transparency to HB occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.

Nyckelord: laser plasma interaction; relativistic transparency; hole-boring; near critical plasmas; Hamiltonian; separatrices

Denna post skapades 2016-04-02. Senast ändrad 2018-01-15.
CPL Pubid: 234038


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)



Chalmers infrastruktur