CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nyquist Stability Analysis of an AC-Grid Connected VSC-HVDC System Using a Distributed Parameter DC Cable Model

Yujiao Song (Institutionen för signaler och system, Reglerteknik) ; Claes Breitholtz (Institutionen för signaler och system, Reglerteknik)
IEEE Transactions on Power Delivery (0885-8977). Vol. 31 (2016), 2, p. 898-907.
[Artikel, refereegranskad vetenskaplig]

In this paper, a two-terminal VSC-HVDC system embedded in a weak grid ac environment is considered, emphasizing modeling, controller design, and small-signal stability analysis. Traditionally, the dc cable is modeled by \Pi -sections, implying that care has to be taken when using the model for higher frequencies or in cases of higher cable impedance density, such as submarine cables. Here, a distributed parameter cable model is used to overcome this problem. The VSC-HVDC system can be described as two cascaded blocks. The first block is a transfer function that will differ depending on what input and output variables are considered, but which is in all realistic cases stable. The second block is a feedback loop, where the forward path is a rational function and the return path is a dissipative infinite dimensional function, remaining the same in all cases. The stability is then analyzed, using the Nyquist criterion, in a straightforward manner. Numerical examples are given by the use of MATLAB. The result is that if the VSC-HVDC system using a single \Pi -section cable model is stable, so is the VSC-HVDC system using a distributed parameter cable model.

Nyckelord: Distributed parameter cable model, Nyquist stability criterion, VSC–HVDC system, weak ac environment.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-03-30. Senast ändrad 2016-04-29.
CPL Pubid: 233848


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Reglerteknik (2005-2017)


Elektroteknik och elektronik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

On the robust stability analysis of VSC-HVDC systems