CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions

Boris Carlsson (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; A. Ekstrom ; Christian Forssén (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Dag Fahlin Strömberg (Institutionen för fysik (Chalmers)) ; G. R. Jansen ; Oskar Lilja (Institutionen för fysik (Chalmers)) ; Mattias Lindby (Institutionen för fysik (Chalmers)) ; Björn Mattsson (Institutionen för fysik (Chalmers)) ; K. A. Wendt
Physical Review X (2160-3308). Vol. 6 (2016), 1,
[Artikel, refereegranskad vetenskaplig]

Chiral effective field theory (chi EFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, chi EFT is able to provide well-founded estimates of statistical and systematic uncertainties-although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of chi EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methods that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first-and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to chi EFT, and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling, showing that statistical errors are, in general, small compared to systematic ones. In conclusion, we find that a simultaneous fit to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in chi EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector, in particular when varying the cutoff in the chiral potentials. The methodology and results presented in this paper open a new frontier for uncertainty quantification in ab initio nuclear theory.



Denna post skapades 2016-03-23. Senast ändrad 2016-10-05.
CPL Pubid: 233635

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)




Projekt

Denna publikation är ett resultat av följande projekt:


Ab initio approach to nuclear structure and reactions (++) (ANSR) (EC/FP7/240603)