CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Variational Bayesian Expectation Maximization for Radar Map Estimation

Malin Lundgren (Institutionen för signaler och system, Signalbehandling) ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; Lars Hammarstrand (Institutionen för signaler och system, Signalbehandling)
IEEE Transactions on Signal Processing (1053-587X). Vol. 64 (2016), 6, p. 1391-1404.
[Artikel, refereegranskad vetenskaplig]

For self-localization, a detailed and reliable map of the environment can be used to relate sensor data to static features with known locations. This paper presents a method for construction of detailed radar maps that describe the expected intensity of detections. Specifically, the measurements are modelled by an inhomogeneous Poisson process with a spatial intensity function given by the sum of a constant clutter level and an unnormalized Gaussian mixture. A substantial difficulty with radar mapping is the presence of data association uncertainties, i.e., the unknown associations between measurements and landmarks. In this paper, the association variables are introduced as hidden variables in a variational Bayesian expectation maximization (VBEM) framework, resulting in a computationally efficient mapping algorithm that enables a joint estimation of the number of landmarks and their parameters.

Nyckelord: Estimation theory, iterative methods, radar



Denna post skapades 2016-03-22. Senast ändrad 2016-08-22.
CPL Pubid: 233512

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling

Ämnesområden

Signalbehandling

Chalmers infrastruktur