CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Discriminants and Artin conductors

Dennis Eriksson (Institutionen för matematiska vetenskaper, Algebra och geometri)
Journal Fur Die Reine Und Angewandte Mathematik (0075-4102). 712, p. 107-121. (2016)
[Artikel, refereegranskad vetenskaplig]

We study questions of multiplicities of discriminants for degenerations coming from projective duality over discrete valuation rings. The main observation is a type of discriminant-different formula in the sense of classical algebraic number theory, and we relate it to Artin conductors via Bloch's conjecture. In the case of discriminants of planar curves we can calculate the different precisely. In general these multiplicities encode topological invariants of the singular fibers and in the case of characteristic p, also wild ramification data in the form of Swan conductors. This builds upon results of T. Saito.

Nyckelord: arithmetic surfaces, elliptic curves, dual varieties, multiplicities, singularities, formula, Mathematics

Denna post skapades 2016-03-18. Senast ändrad 2016-12-20.
CPL Pubid: 233406


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Algebra och geometriInstitutionen för matematiska vetenskaper, Algebra och geometri (GU)



Chalmers infrastruktur