CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical solution of parabolic problems based on a weak space-time formulation

Stig Larsson (Institutionen för matematiska vetenskaper, matematik) ; Matteo Molteni (Institutionen för matematiska vetenskaper, matematik)

We investigate a weak space-time formulation of the heat equation and its use for the construction of a numerical scheme. The formulation is based on a known weak space-time formulation, with the difference that a pointwise component of the solution, which in other works is usually neglected, is now kept. We investigate the role of such a component by first using it to obtain a pointwise bound on the solution and then deploying it to construct a numerical scheme. The scheme obtained, besides being quasi-optimal in the L2 sense, is also pointwise superconvergent in the temporal nodes. We prove a priori error estimates and we present numerical experiments to empirically support our findings.

Nyckelord: inf-sup, space-time, superconvergence, quasi-optimality, finite ele- ment, error estimate, Petrov–Galerkin.

Denna post skapades 2016-03-13. Senast ändrad 2016-03-22.
CPL Pubid: 233147


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys

Chalmers infrastruktur