CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells

C. Trompoukis ; Ines Massiot (Institutionen för fysik, Bionanofotonik (Chalmers)) ; V. Depauw ; O. El Daif ; K. Lee ; Alexandre Dmitriev (Institutionen för fysik, Bionanofotonik (Chalmers)) ; I. Gordon ; R. Mertens ; J. Poortmans
Optics Express (1094-4087). Vol. 24 (2016), 2, p. A191-A201.
[Artikel, refereegranskad vetenskaplig]

We report on the fabrication of disordered nanostructures by combining colloidal lithography and silicon etching. We show good control of the short-range ordered colloidal pattern for a wide range of bead sizes from 170 to 850 nm. The inter-particle spacing follows a Gaussian distribution with the average distance between two neighboring beads (center to center) being approximately twice their diameter, thus enabling the nanopatterning with dimensions relevant to the light wavelength scale. The disordered nanostructures result in a lower integrated reflectance (8.1%) than state-of-the-art random pyramid texturing (11.7%) when fabricated on 700 mu m thick wafers. When integrated in a 1.1 mu m thin crystalline silicon slab, the absorption is enhanced from 24.0% up to 64.3%. The broadening of resonant modes present for the disordered nanopattern offers a more broadband light confinement compared to a periodic nanopattern. Owing to its simplicity, versatility and the degrees of freedom it offers, this potentially low-cost bottom-up nanopatterning process opens perspectives towards the integration of advanced light-trapping schemes in thin solar cells.



Denna post skapades 2016-03-09.
CPL Pubid: 232947

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Bionanofotonik (Chalmers)

Ämnesområden

Optik

Chalmers infrastruktur

 


Projekt

Denna publikation är ett resultat av följande projekt:


Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS) (EC/FP7/309127)