CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The K - μ / inverse gamma fading model

S.K. Yoo ; S.L. Cotton ; P.C. Sofotasios ; Michail Matthaiou (Institutionen för signaler och system, Signalbehandling) ; M. Valkama ; G.K. Karagiannidis
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC Vol. 2015-December (2015), p. 425-429.
[Konferensbidrag, refereegranskat]

© 2015 IEEE. Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ - μ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution has a simple relationship with the gamma distribution, but most importantly, its semi heavy-tailed characteristics constitute it suitable for applications relating to modeling of shadowed fading. Furthermore, the derived probability density function of the κ - μ / inverse gamma composite distribution admits a rather simple algebraic representation that renders it convenient to handle both analytically and numerically. The validity and utility of this fading model are demonstrated by means of modeling the fading effects encountered in body centric communications channels, which have been known to be susceptible to the shadowing effect. To this end, extensive comparisons are provided between theoretical and respective real-time measurement results. It is shown that these comparisons exhibit accurate fitting of the new model for various measurement set ups that correspond to realistic communication scenarios.



Denna post skapades 2016-03-02. Senast ändrad 2016-08-12.
CPL Pubid: 232671

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling

Ämnesområden

Telekommunikation

Chalmers infrastruktur