CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage

Volodymyr Kuzmenko (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Amin M Saleem (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Arun Bhaskar (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Henrik Staaf (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; Vincent Desmaris (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Peter Enoksson (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (1742-6588). Vol. 660 (2015), 1, p. Art. no. 012062.
[Konferensbidrag, refereegranskat]

The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. energy storage. This study presents new sustainable cellulose-derived materials that can be used as electrodes for supercapacitors. Nanofibrous carbon nanofiber (CNF) mats were covered with vapor-grown carbon nanotubes (CNTs) in order to get composite CNF/CNT electrode material. The resulting composite material had significantly higher surface area and was much more conductive than pure CNF material. The performance of the CNF/CNT electrodes was evaluated by various analysis methods such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic stability. The results showed that the cellulose-derived composite electrodes have fairly high values of specific capacitance and power density and can retain excellent performance over at least 2 000 cycles. Therefore it can be stated that sustainable cellulose-derived CNF/CNT composites are prospective materials for supercapacitor electrodes.

Nyckelord: activated carbon, nanofibers, supercapacitors, graphene, nanotube

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-02-10. Senast ändrad 2016-07-14.
CPL Pubid: 231910


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)