CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells

Björn Agnarsson (Institutionen för teknisk fysik, Biologisk fysik) ; Anders Lundgren (Institutionen för teknisk fysik, Biologisk fysik) ; Anders Gunnarsson (Institutionen för teknisk fysik, Biologisk fysik) ; Michael Rabe (Institutionen för teknisk fysik, Biologisk fysik) ; Angelika Kunze (Institutionen för teknisk fysik, Biologisk fysik) ; Mokhtar Mapar (Institutionen för teknisk fysik, Biologisk fysik) ; Lisa Simonsson (Institutionen för teknisk fysik, Biologisk fysik) ; Marta Bally (Institutionen för teknisk fysik, Biologisk fysik) ; Vladimir P. Zhdanov (Institutionen för teknisk fysik, Biologisk fysik) ; Fredrik Höök (Institutionen för teknisk fysik, Biologisk fysik)
ACS Nano (1936-0851). Vol. 9 (2015), 12, p. 11849-11862.
[Artikel, refereegranskad vetenskaplig]

Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 rim gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.

Nyckelord: single molecule detection, label-free optical imaging, evanescent light, waveguide, biosensor, TIRF, TIR, scattering, fluorescence

Denna post skapades 2016-01-22.
CPL Pubid: 231124


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Fabrication, development and characterization of a waveguide microscopy device for biological applications