CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Traffic-grooming- and multipath-routing-enabled impairment-aware elastic optical networks

Madushanka Nishan Dharmaweera (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Li Yan (Institutionen för signaler och system, Kommunikationssystem) ; Magnus Karlsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Erik Agrell (Institutionen för signaler och system, Kommunikationssystem)
Journal of Optical Communications and Networking (1943-0620). Vol. 8 (2016), 2, p. 58-70.
[Artikel, refereegranskad vetenskaplig]

Traffic grooming and multipath routing are two techniques that are widely adopted to increase the performance of traditional wavelength division multiplexed networks. They have been recently applied in elastic optical networks to increase spectral efficiency. In this study, we investigate the potential gains by jointly employing the two techniques in combination with a realistic physical impairment model. To allocate resources and quantify spectral efficiency gains over existing impairment-aware schemes, we present an analytical optimization formulation for small networks and a heuristic for large networks. Through numerical simulations, we demonstrate that traffic grooming and multipath routing, together, increase spectral efficiency and reduce resource consumption over existing schemes. We show that the proposed scheme offers significant performance improvements in networks with low degrees of connectivity, high traffic loads, and long links.

Nyckelord: Elastic optical networks, Multipath routing, Network optimization, Resource allocation, Traffic grooming

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-15. Senast ändrad 2016-04-28.
CPL Pubid: 230763


Läs direkt!

Länk till annan sajt (kan kräva inloggning)


Denna publikation är ett resultat av följande projekt:

Adaptive optical networks: Theory and algorithms for system optimization (VR//2012-5280)