CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Plasmon-Assisted Indirect Light Absorption Engineering in Small Transition Metal Catalyst Nanoparticles

Tomasz Antosiewicz (Institutionen för teknisk fysik, Bionanofotonik) ; Carl Wadell (Institutionen för teknisk fysik, Kemisk fysik) ; Christoph Langhammer (Institutionen för teknisk fysik, Kemisk fysik)
Advanced Optical Materials (2195-1071). Vol. 3 (2015), 11, p. 1591-1599.
[Artikel, refereegranskad vetenskaplig]

Light absorption in plasmonic nanoantennas constitutes an interesting way of enhancing catalytic reactions occurring at surfaces of metals nanoparticles by forming hot electron-hole pairs. These can either directly transfer to empty orbitals of adsorbed species on the nanoparticle surface or thermalize via electron-phonon coupling and enhance reaction rates via a photothermal reaction channel. While this scheme, in principle, can be efficient for the well-known plasmonic materials Ag and Au due to their large optical cross-sections, other transition metals, which exhibit excellent catalytic properties, have spectrally broad and weak plasmon resonances. Thus, lower plasmon-induced electron-hole pair excitation is expected, especially for sub-10 nm nanoparticles, typical in heterogeneous catalysis. Here, a solution is presented to circumvent these limitations by challenging the established picture that plasmonic nanoparticles also constitute catalytically active entities in a plasmon mediated hot electron catalysis concept. Light absorption in catalyst nanoparticles can be engineered via an adjacent noble metal plasmonic nanoantenna that efficiently collects incident radiation with low losses, and couples it into the catalytic particles where the energy is dissipated due to the intrinsically high optical losses in transition metals at near-visible frequencies. Absorption enhancement of 1-2 orders of magnitude is predicted in 3-4 nm sized Pd catalyst nanoparticles.

Nyckelord: Catalysis; Light absorption; Nanoparticles; Optical antenna; Plasmonics

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-15. Senast ändrad 2017-09-14.
CPL Pubid: 230717


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)


Nanovetenskap och nanoteknik

Chalmers infrastruktur