CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Stress gradient effects in surface initiated rolling contact fatigue of rails and wheels

Anders Ekberg (Institutionen för tillämpad mekanik, Dynamik) ; Elena Kabo (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Roger Lundén (Institutionen för tillämpad mekanik, Dynamik) ; Motohide Matsui (Institutionen för tillämpad mekanik, Dynamik)
Proceedings of the 10th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2015) (2015)
[Konferensbidrag, refereegranskat]

The paper investigates gradient effects, which relates to how highly stressed regions should be dealt with in fatigue design analyses. In particular stress gradients in rolling contact are investigated with a focus on differences in response between full or partial slip conditions. To this end the multiaxial state of stress beneath a wheel–rail contact featuring full or partial slip is quantified using a mulitaxial equivalent stress criterion. A comparative study shows that the significant differences in peak interfacial shear stress magnitudes between full and partial slip conditions are significantly reduced when translated to equivalent stress magnitudes. In addition, stress gradients beneath a frictional contact are compared to stress gradients outside a uniaxially loaded small hole in a plate and was found to correspond to hole radii in the order of 0.5– 0.7 millimetres for the cases studied. The study concludes that the use of local magnitudes of interfacial shear stress in the analysis of surface initiated rolling contact fatigue is conservative. The analysis framework established in the current study can be used to estimate the level of conservativeness.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-14. Senast ändrad 2017-03-21.
CPL Pubid: 230695


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)
Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Hållbar utveckling
Innovation och entreprenörskap (nyttiggörande)

Chalmers infrastruktur