CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Structural Origin of the Mixed Glass Former Effect in Sodium Borophosphate Glasses Investigated with Neutron Diffraction and Reverse Monte Carlo Modeling

Maths Karlsson (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; M. Schuch ; R. Christensen ; P. Maass ; S. W. Martin ; S. Imberti ; Aleksandar Matic (Institutionen för teknisk fysik, Kondenserade materiens fysik)
Journal of Physical Chemistry C (1932-7447). Vol. 119 (2015), 49, p. 27275-27284.
[Artikel, refereegranskad vetenskaplig]

The mixed glass former systems 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P2O5] and 0.5Na(2)O + 0.5[xB(2)O(3) + (1 - x)P2O5] with x = 0-1 were investigated with neutron diffraction (ND) together with reverse Monte Carlo (RMC) modeling of 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P2O5]. The results show that the structure of both systems is reflected by an intermediate-range ordering, with a characteristic x-dependent length scale of about 4-6 angstrom and which contracts slightly with the increase of the Na concentration. Results obtained from RMC modeling of the 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P2O5] system, using both previously reported X-ray diffraction (XRD) data as well as the here obtained ND data as independent constraints in the modeling, show that the intermediate-range structural features, notably the Na coordination and volume fraction of the conducting pathways, are only weakly dependent on the choice of the constraints used. In particular, we observe that the volume fraction of the conducting pathways and the activation energy for ionic conduction are only weakly correlated to each other, as opposed to what is found for binary alkali borate and phosphate glasses.

Denna post skapades 2016-01-11.
CPL Pubid: 230373


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)


Fysikalisk kemi

Chalmers infrastruktur