CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Kinetic modelling of runaway-electron dynamics

Adam Stahl (Institutionen för teknisk fysik, Nukleär teknik) ; Ola Embréus (Institutionen för teknisk fysik, Nukleär teknik) ; Eero Hirvijoki (Institutionen för teknisk fysik, Nukleär teknik) ; Gergely Papp ; Matt Landreman ; István Pusztai (Institutionen för teknisk fysik, Nukleär teknik) ; Tünde Fülöp (Institutionen för teknisk fysik, Nukleär teknik)
Proceedings of the 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (2015)
[Konferensbidrag, övrigt]

Improved understanding of runaway-electron formation and decay processes are of prime interest for the safe operation of large tokamaks, and their dynamics during dynamical scenarios such as disruptions are of particular concern. In this contribution, we present kinetic modelling of scenarios with time-dependent plasma parameters – in particular, we investigate hot-tail runaway generation during a rapid drop in plasma temperature. With the goal of studying runaway-electron generation with a self-consistent electric field-evolution, we also discuss the implementation of a conservative collision operator and demonstrate its properties. An operator for avalanche runaway-electron generation which includes the proper energy dependence of the runaway distribution, is investigated, and the avalanche growth rate is shown to be significantly affected in some parameter regimes. These developments all pave the way for an improved modelling of runaway-electron dynamics during disruptions or other dynamic events.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-07. Senast ändrad 2016-05-19.
CPL Pubid: 230035

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Nukleär teknik (2006-2015)

Ämnesområden

Energi
Hållbar utveckling
Plasmafysik
Fusion
Plasmafysik med fusion

Chalmers infrastruktur