CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical calculation of ion runaway distributions

Sarah Newton (Institutionen för teknisk fysik, Nukleär teknik) ; Ola Embréus (Institutionen för teknisk fysik, Nukleär teknik) ; Adam Stahl (Institutionen för teknisk fysik, Nukleär teknik) ; Eero Hirvijoki (Institutionen för teknisk fysik, Nukleär teknik) ; Tünde Fülöp (Institutionen för teknisk fysik, Nukleär teknik)
57th Annual Meeting of the APS Division of Plasma Physics Vol. 60 (2015), 19, p. CP12.00118.
[Konferensbidrag, poster]

Ion acceleration by electric fields is of interest in many plasma scenarios. Limitations of analytic descriptions prevent their general use in following the evolution of such ``runaway ion'' populations. Therefore we have implemented an initial value solver, CODION, for the linearized ion drift kinetic equation, with a non-relativistic Fokker-Planck collision operator. A spectral-Eulerian discretization scheme is used for 2D velocity space. The background plasma is taken to be homogeneous and static, with arbitrary composition. We demonstrate the use of the numerical distribution function to study ion acceleration in solar flares and tokamak plasmas. The variation of the strength and duration of the electric field required to produce a significant fast ion population is illustrated. Low frequency magnetic activity, indicative of toroidal Alfv\'{e}n eigenmode excitation, has been observed during tokamak disruptions. Taking typical disruption parameters, we show that accelerated bulk ions are unlikely to reach a sufficient velocity to provide the resonant drive.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-06. Senast ändrad 2017-01-09.
CPL Pubid: 229913

 

Institutioner (Chalmers)

Institutionen för teknisk fysik, Nukleär teknik (2006-2015)

Ämnesområden

Energi
Hållbar utveckling
Plasmafysik
Fusion
Plasmafysik med fusion

Chalmers infrastruktur