CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Computing genus 1 Jacobi forms

Martin Westerholt-Raum (Institutionen för matematiska vetenskaper, matematik)
Mathematics of Computation (0025-5718). Vol. 85 (2016), 298, p. 931-960.
[Artikel, refereegranskad vetenskaplig]

We develop an algorithm to compute Fourier expansions of vector valued modular forms for Weil representations. As an application, we compute explicit linear equivalences of special divisors on modular varieties of orthogonal type. We define three families of Hecke operators for Jacobi forms, and analyze the induced action on vector valued modular forms. The newspaces attached to one of these families are used to give a more memory efficient version of our algorithm. - See more at: http://www.ams.org/journals/mcom/2016-85-298/S0025-5718-2015-02992-5/#sthash.bv7cxz8N.dpuf



Denna post skapades 2016-01-05. Senast ändrad 2016-03-22.
CPL Pubid: 229841

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Geometri
Algebra och geometri

Chalmers infrastruktur