CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

High-Tc SQUID vs. low-Tc SQUID-based recordings on a head phantom: Benchmarking for magnetoencephalography

Minshu Xie (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; J. F. Schneiderman ; Maxim Chukharkin (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Alexei Kalaboukhov (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; S. Whitmarsh ; D. Lundqvist ; Dag Winkler (Institutionen för mikroteknologi och nanovetenskap)
IEEE transactions on applied superconductivity (1051-8223). Vol. 25 (2015), 3, p. Article number 6940248.
[Artikel, refereegranskad vetenskaplig]

We explore the potential that high critical-temperature (high-Tc) superconducting quantum interference device (SQUID) technology has for magnetic recordings of brain activity, i.e., magnetoencephalography (MEG). To this end, we performed a series of benchmarking experiments to directly compare recordings with a commercial (low-Tc SQUID-based) 306-channel MEG system (Elekta Neuromag TRIUX, courtesy of NatMEG) and a single channel high-Tc SQUID system. The source on which we recorded is a head phantom including 32 artificial current dipoles housed inside a half-spherical shell (courtesy Elekta Oy) for calibrating MEG systems. The high-Tc SQUID magnetometer consisted of a single layer YBa2Cu3O7-x (YBCO) film on a 10 mm × 10 mm bicrystal substrate with a magnetic field sensitivity of ~40 fT/Hz down to 10 Hz. We recorded serial activations of eight tangential current dipoles located at different depths from the surface of the head phantom. Results indicate that our individual high-Tc SQUID demonstrated signal-to-noise ratios (SNRs) about 7-14 times lower than that of similarly-positioned low-Tc SQUIDs in a commercial MEG system. Only considering single-channel SNR, high-Tc SQUIDs with resolution better than 18 fT/Hz would be required to outperform the low-Tc system for shallow dipole sources. This work demonstrates a proof of principle study for future multichannel high-Tc MEG system development.

Nyckelord: Benchmark testing; dc-SQUIDs; High-temperature superconductors; Magnetoencephalography; Yttrium barium copper oxide

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-05. Senast ändrad 2017-09-14.
CPL Pubid: 229650


Läs direkt!

Länk till annan sajt (kan kräva inloggning)