CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Role of Quantum Interference Effects in Normal-State Transport Properties of Electron-Doped Cuprates

P. Orgiani ; A. Galdi ; C. Sacco ; Riccardo Arpaia (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Sophie Charpentier (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Floriana Lombardi (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; C. Barone ; S. Pagano ; D. G. Schlom ; L. Maritato
Journal of Superconductivity and Novel Magnetism (1557-1939). Vol. 28 (2015), 12, p. 3481-3486.
[Artikel, refereegranskad vetenskaplig]

The normal-state resistivity of thin films of the infinite-layer electron-doped cuprate Sr (1-x) La (x) CuO (2 +/-delta) has been investigated. Under-doped samples, which clearly show a metal-to-insulator transition (MIT) at low temperatures, have allowed the determination of the fundamental physical mechanism behind the upturn of the resistivity, namely the quantum interference effects (QIEs) in three-dimensional systems. The occurrence of weak localization effects has been unambiguously proven by low-frequency voltage spectral density measurements, which show a linear dependence of the 1/f noise on the applied bias current at low temperatures. The identification of the QIEs at low temperatures has therefore allowed the determination of the high-temperature non-Fermi liquid metallic phase, which is dominated by a linear temperature dependence of the resistivity for all of the samples investigated.

Nyckelord: Superconductivity, Metal-insulator-transition, Electron-doped cuprates



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-01-04. Senast ändrad 2016-09-14.
CPL Pubid: 229496

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)