CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Data-Streaming and Concurrent Data-Object Co-design: Overview and Algorithmic Challenges

Vincenzo Gulisano (Institutionen för data- och informationsteknik, Nätverk och system, Datakommunikation och distribuerade system (Chalmers)) ; Yiannis Nikolakopoulos (Institutionen för data- och informationsteknik, Nätverk och system, Datakommunikation och distribuerade system (Chalmers)) ; Marina Papatriantafilou (Institutionen för data- och informationsteknik, Nätverk och system, Datakommunikation och distribuerade system (Chalmers)) ; Philippas Tsigas (Institutionen för data- och informationsteknik, Nätverk och system, Datakommunikation och distribuerade system (Chalmers))
Lecture Notes in Computer Science. European Symposium on Algorithms, ESA 2015, Patras, Greece, 16 September 2015 (0302-9743). Vol. 9295 (2015), p. 242-260.
[Konferensbidrag, refereegranskat]

Processing big volumes of data generated on-line, implies needs to carry out computations on-the-fly, in the streams of data. In parallel data-stream computing, the underlying data objects can provide the means for exchanging the data so that the communication and the work imbalance between the concurrent threads performing the computation are reduced, while the pipeline parallelism is enhanced. By shedding light on the concurrent data objects and their role as articulation points in data-stream processing, we place some cornerstones to analyze the problems, propose appropriate new data structures suitable for a set of functions and identify new key challenges to improve data-stream processing through co-design with fine-grain efficient synchronization combined with the data exchange. It is interesting to point out that research in distributed computing on multiprocessor efficient and consistent data sharing through fine-grain synchronization emerged from questions in concurrent database-related research; approximately three decades since then, it is interesting to see several returns of the fruits of this expedition, helping with the new problems in the massive-data research domain, with applications in e.g. cyberphysical systems.



Denna post skapades 2015-12-26. Senast ändrad 2016-01-18.
CPL Pubid: 229114

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)