CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?

Daniel Ahlberg ; Jeffrey Steif (Institutionen för matematiska vetenskaper, matematik) ; Gabor Pete
(2015)
[Preprint]

Consider a monotone Boolean function f:{0,1}^n \to {0,1} and the canonical monotone coupling {eta_p:p in [0,1]} of an element in {0,1}^n chosen according to product measure with intensity p in [0,1]. The random point p in [0,1] where f(eta_p) flips from 0 to 1 is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, we peer closely into this threshold window and consider, for large n, the limiting distribution (properly normalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated majorityand percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate probability measure on R arises in this way for some sequence of Boolean functions.

Nyckelord: Boolean functions; sharp thresholds; influences; iterated majority function; near- critical percolation



Denna post skapades 2015-12-23.
CPL Pubid: 229075

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur