CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Koppelman formulas on affine cones over smooth projective complete intersections

Richard Lärkäng (Institutionen för matematiska vetenskaper, matematik) ; Jean Ruppenthal

In the present paper, we study regularity of the Andersson-Samuelsson Koppelman integral operator on affine cones over smooth projective complete intersections. Particularly, we prove L^p- and C^\alpha-estimates, and compactness of the operator, when the degree is sufficiently small. As applications, we obtain homotopy formulas for different \dbar-operators acting on L^p-spaces of forms, including the case p=2 if the varieties have canonical singularities. We also prove that the A-forms introduced by Andersson-Samuelsson are C^\alpha for \alpha<1.

Denna post skapades 2015-12-22. Senast ändrad 2016-08-15.
CPL Pubid: 228905


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Matematisk analys

Chalmers infrastruktur