CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Spatial Wireless Channel Prediction under Location Uncertainty

Leela Srikar Muppirisetty (Institutionen för signaler och system, Kommunikationssystem) ; Tommy Svensson (Institutionen för signaler och system, Kommunikationssystem) ; Henk Wymeersch (Institutionen för signaler och system, Kommunikationssystem)
IEEE Transactions on Wireless Communications (1536-1276). Vol. 15 (2016), 2, p. 1031-1044.
[Artikel, refereegranskad vetenskaplig]

Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties. In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-12-14. Senast ändrad 2016-07-07.
CPL Pubid: 228143

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)




Projekt

Denna publikation är ett resultat av följande projekt:


Cooperative Situational Awareness for Wireless Networks (COOPNET) (EC/FP7/258418)