CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multifeed simultaneous saccharification and fermentation enables high gravity submerged fermentation of lignocellulose.

Carl Johan Franzén (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Ruifei Wang (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Johan Westman (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Charilaos Xiros (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Rakesh Koppram (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Elia Tomas-Pejo (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Lisbeth Olsson (Institutionen för biologi och bioteknik, Industriell bioteknik)
Recent Advances in Fermentation Technology (RAFT 11), Clearwater Beach, Florida, USA, November 8-11, 2015. Oral presentation. (2015)
[Konferensbidrag, övrigt]

Today, second generation bioethanol production is becoming established in production plants across the world. In addition to its intrinsic value, the process can be viewed as a model process for biotechnological conversion of recalcitrant lignocellulosic raw materials to a range of chemicals and other products. So called High Gravity operation, i.e. fermentation at high solids loadings, represents continued development of the process towards higher product concentrations and productivities, and improved energy and water economy. We have employed a systematic, model-driven approach to the design of feeding schemes of solid substrate, active yeast adapted to the actual substrate, and enzymes to fed-batch simultaneous saccharification and co-fermentation (Multifeed SSCF) of steam-pretreated lignocellulosic materials in stirred tank reactors. With this approach, mixing problems were avoided even at water insoluble solids contents of 22%, leading to ethanol concentrations of 56 g/L within 72 hours of SSCF on wheat straw. Similar fermentation performance was verified in 10 m3 demonstration scale using wheat straw, and in lab scale on birch and spruce, using several yeast strains. The yeast was propagated in the liquid fraction obtained by press filtration of the pretreated slurry. Yet, even with such preadaptation and repeated addition of fresh cells, the viability in the SSCF dropped due to interactions between lignocellulose-derived inhibitors, the produced ethanol and the temperature. Decreasing the temperature from 35 to 30°C when the ethanol concentration reached 40-50 g/L resulted in rapid initial hydrolysis, maintained fermentation capacity, lower residual glucose and xylose and ethanol concentrations above 60 g/L.

Nyckelord: Lignocellulose, bioethanol, kinetic modeling, fed-batch high gravity, scale-up, flocculation, biorefinery



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-12-08. Senast ändrad 2015-12-08.
CPL Pubid: 227614