CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

New Approaches for Channel Prediction Based on Sinusoidal Modeling

Ming Chen (Institutionen för signaler och system, Signalbehandling) ; Torbjörn Ekman ; Mats Viberg (Institutionen för signaler och system, Signalbehandling)
EURASIP Journal on Advances in Signal Processing (1687-6172). Vol. 2007 (2007),
[Artikel, refereegranskad vetenskaplig]

Long-range channel prediction is considered to be one of the most important enabling technologies to future wireless communication systems. The prediction of Rayleigh fading channels is studied in the frame of sinusoidal modeling in this paper. A stochastic sinusoidal model to represent a Rayleigh fading channel is proposed. Three different predictors based on the statistical sinusoidal model are proposed. These methods outperform the standard linear predictor (LP) in Monte Carlo simulations, but underperform with real measurement data, probably due to nonstationary model parameters. To mitigate these modeling errors, a joint moving average and sinusoidal (JMAS) prediction model and the associated joint least-squares (LS) predictor are proposed. It combines the sinusoidal model with an LP to handle unmodeled dynamics in the signal. The joint LS predictor outperforms all the other sinusoidal LMMSE predictors in suburban environments, but still performs slightly worse than the standard LP in urban environments.

Denna post skapades 2006-10-04. Senast ändrad 2014-09-02.
CPL Pubid: 22666


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Radio Channel Prediction Based on Parametric Modeling