CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network

Guodong Liu (Institutionen för kemi- och bioteknik, Systembiologi) ; Antonio Marras (Institutionen för kemi- och bioteknik, Systembiologi) ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
Quantitative Biology (2095-4689). Vol. 2 (2014), 1, p. 30-46.
[Artikel, refereegranskad vetenskaplig]

Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model. While many large-scale TRN reconstructions have been reported for yeast, these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate transcriptional regulatory interactions to genome-scale metabolic models in a quantitative manner.

Nyckelord: transcriptional regulatory network, metabolic model, Saccharomyces cerevisiae, integration

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-11-26. Senast ändrad 2017-01-17.
CPL Pubid: 226417


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)


Bioinformatik och systembiologi

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)