CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition

Max Jair Ortiz-Catalan (Institutionen för signaler och system, Medicinska signaler och system)
Frontiers in Neuroscience (1662-4548). Vol. 9 (2015),
[Artikel, refereegranskad vetenskaplig]

Accurate descriptors of muscular activity play an important role in clinical practice and rehabilitation research. Such descriptors are features of myoelectric signals extracted from sliding time windows. A wide variety of myoelectric features have been used as inputs to pattern recognition algorithms that aim to decode motor volition. The output of these algorithms can then be used to control limb prostheses, exoskeletons, and rehabilitation therapies. In the present study, cardinality is introduced and compared with traditional time-domain (Hudgins' set) and other recently proposed myoelectric features (for example, rough entropy). Cardinality was found to consistently outperform other features, including those that are more sophisticated and computationally expensive, despite variations in sampling frequency, time window length, contraction dynamics, type, and number of movements (single or simultaneous), and classification algorithms. Provided that the signal resolution is kept between 12 and 14 bits, cardinality improves myoelectric pattern recognition for the prediction of motion volition. This technology is instrumental for the rehabilitation of amputees and patients with motor impairments where myoelectric signals are viable. All code and data used in this work is available online within BioPatRec.

Nyckelord: Bioelectric signal processing , Cardinality , Electromyography , EMG , Myoelectric pattern recognition , Prosthetic control

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-11-24. Senast ändrad 2016-01-15.
CPL Pubid: 226268


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Medicinska signaler och system (2005-2017)


Informations- och kommunikationsteknik
Annan medicinteknik

Chalmers infrastruktur