CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Small automorphic representations and degenerate Whittaker vectors

Henrik P. A. Gustafsson (Institutionen för fundamental fysik) ; Axel Kleinschmidt ; Daniel Persson (Institutionen för fundamental fysik)
Journal of Number Theory (0022-314X). Vol. 166 (2016), p. 344-399.
[Artikel, refereegranskad vetenskaplig]

We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whittaker vectors on G. Although we expect our results to hold for arbitrary simply-laced groups, we give complete proofs only for G=SL(3) and G=SL(4). This is based on a method of Ginzburg that associates Fourier coefficients of automorphic forms with nilpotent orbits of G. Our results complement and extend recent results of Miller and Sahi. We also use our formalism to calculate various local (real and p-adic) spherical vectors of minimal representations of the exceptional groups E_6, E_7, E_8 using global (adelic) degenerate Whittaker vectors, correctly reproducing existing results for such spherical vectors obtained by very different methods.


arXiv:1412.5625 [math.NT] http://arxiv.org/abs/1412.5625



Denna post skapades 2015-11-23. Senast ändrad 2016-05-27.
CPL Pubid: 226140

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fundamental fysik (2005-2015)

Ämnesområden

Algebra och geometri
Diskret matematik
Matematisk fysik
Relativitetsteori, gravitation

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Automorphic string amplitudes