CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.

Furqan A. Shah ; Anders Snis ; Aleksandar Matic (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Peter Thomsen ; Anders Palmquist
Acta biomaterialia (1742-7061). Vol. 30 (2016), p. 357–367.
[Artikel, refereegranskad vetenskaplig]

For load-bearing orthopaedic applications, metal implants having an interconnected pore structure exhibit the potential to facilitate bone ingrowth and the possibility for reducing the stiffness mismatch between the implant and bone, thus eliminating stress-shielding effects. 3D printed solid and macro-porous Ti6Al4V implants were evaluated after six-months healing in adult sheep femora. The ultrastructural composition of the bone-implant interface was investigated using Raman spectroscopy and electron microscopy, in a correlative manner. The mineral crystallinity and the mineral-to-matrix ratios of the interfacial tissue and the native bone were found to be similar. However, lower Ca/P ratios, lower carbonate content, but higher proline, phenylalanine and tyrosine levels indicated that the interfacial tissue remained less mature. Bone healing was more advanced at the porous implant surface (vs. the solid implant surface) based on the interfacial tissue ν1 CO3(2-)/ν2 PO4(3-) ratio, phenylalanine and tyrosine levels approaching those of the native bone. The mechanosensing infrastructure in bone, the osteocyte lacuno-canalicular network, retained ∼40% more canaliculi per osteocyte lacuna, i.e., a 'less aged' morphology at the interface. The osteocyte density per mineralised surface area was ∼36-71% higher at the interface after extended healing periods.

Nyckelord: 3D printing, Ti6Al4V, Raman spectroscopy, Osteocyte, Electron microscopy, Osseointegration

Denna post skapades 2015-11-19. Senast ändrad 2016-04-06.
CPL Pubid: 225962


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kliniska vetenskaper, sektionen för anestesi, biomaterial och ortopedi, Avdelningen för biomaterialvetenskap (GU)
Institutionen för fysik, Kondenserade materiens fysik (Chalmers)



Chalmers infrastruktur