CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Integration of expert knowledge into radial basis function surrogate models

Zuzana Nedelkova (Institutionen för matematiska vetenskaper, matematik) ; Peter Lindroth ; Ann-Brith Strömberg (Institutionen för matematiska vetenskaper, matematik) ; Michael Patriksson (Institutionen för matematiska vetenskaper, matematik)
Optimization and Engineering (1389-4420). Vol. 17 (2016), 3, p. 577-603.
[Artikel, refereegranskad vetenskaplig]

A current application in a collaboration between Chalmers University of Technology and Volvo Group Trucks Technology concerns the global optimization of a complex simulation-based function describing the rolling resistance coefficient of a truck tyre. This function is crucial for the optimization of truck tyres selection considered. The need to explicitly describe and optimize this function provided the main motivation for the research presented in this article. Many optimization algorithms for simulation-based optimization problems use sample points to create a computationally simple surrogate model of the objective function. Typically, not all important characteristics of the complex function (as, e.g., non-negativity)—here referred to as expert knowledge—are automatically inherited by the surrogate model. We demonstrate the integration of several types of expert knowledge into a radial basis function interpolation. The methodology is first illustrated on a simple example function and then applied to a function describing the rolling resistance coefficient of truck tyres. Our numerical results indicate that expert knowledge can be advantageously incorporated and utilized when creating global approximations of unknown functions from sample points.

Nyckelord: Radial basis functions, Interpolation, Approximation, Expert knowledge, Optimization, Rolling resistance coefficient



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-11-10. Senast ändrad 2016-10-28.
CPL Pubid: 225520

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Energi
Transport
Hållbar utveckling
Optimeringslära, systemteori

Chalmers infrastruktur