CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds

Volodymyr Kuzmenko (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; Theodoros Kalogeropoulos (Institutionen för kemi och kemiteknik) ; Johannes Thunberg (Institutionen för kemi och kemiteknik, Organisk kemi) ; Sara Johannesson (Institutionen för kemi och kemiteknik) ; Daniel Hägg (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Peter Enoksson (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; Paul Gatenholm (Institutionen för kemi och kemiteknik, Polymerteknologi)
Materials science & engineering. C, biomimetic materials, sensors and systems (0928-4931). Vol. 58 (2016), p. 14-23.
[Artikel, refereegranskad vetenskaplig]

The problemof recovery fromneurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problemsince it can help to develop healthy neural tissue using supportive scaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much more conductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells.

Nyckelord: Electrospun cellulose; Conductive scaffolds; Cell attachment; Neural network

Denna post skapades 2015-10-30. Senast ändrad 2015-12-09.
CPL Pubid: 225075