CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quantum deformed Richardson-Gaudin model

Henrik Johannesson ; Alexander Stolin (Institutionen för matematiska vetenskaper, matematik) ; Petr Kulish
Progress in Electromagnetics Research Symposium, PIERS 2013 Stockholm (1559-9450). p. 789-793. (2013)
[Konferensbidrag, refereegranskat]

The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows for its eigenstates to be constructed algebraically. In this work, we show that quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.

Nyckelord: Eigenstates; Finite chains; Integrability; Integrals of motion; Inverse scattering methods; Nilpotent; Pairing correlations; Quantum groups

Denna post skapades 2015-10-29. Senast ändrad 2016-05-09.
CPL Pubid: 225040


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik (GU) (GU)
Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur