CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quantized Reduced Fusion Elements and Kostant’s Problem

Alexander Stolin (Institutionen för matematiska vetenskaper, matematik) ; Eugene Karolinsky ; Vitaly Tarasov
Springer Proceedings in Mathematics and Statistics Vol. 85 (2014), p. 27-36.
[Konferensbidrag, refereegranskat]

We find a partial solution to the problem of Kostant concerning description of the locally finite endomorphisms of highest weight irreducible modules. The solution is obtained by means of its reduction to an extension of the quantization problem. While the classical quantization problem consists in finding ⋆-product deformations of the commutative algebras of functions, we consider the q-case when the initial object is already a noncommutative algebra.

Nyckelord: quantization, homogeneous space, Yang-Baxter equation



Denna post skapades 2015-10-29. Senast ändrad 2015-11-30.
CPL Pubid: 225021

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik
Fysik

Chalmers infrastruktur