CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On quantum groups and Lie bialgebras related to sl(n)

Alexander Stolin (Institutionen för matematiska vetenskaper, matematik) ; Iulia Pop (Institutionen för matematiska vetenskaper, matematik)
Journal of Physics Conference Series Vol. 532 (2014), p. artikel nr 012026.
[Konferensbidrag, refereegranskat]

Given an arbitrary field of characteristic 0, we study Lie bialgebra structures on sl(n, ), based on the description of the corresponding classical double. For any Lie bialgebra structure δ, the classical double D(sl(n,F),δ) is isomorphic to sl(n,F) ⊗FA, where A is either F[ε], with ε2 = 0, or F⊗F or a quadratic field extension of F. In the first case, the classification leads to quasi-Frobenius Lie subalgebras of sl(n,F). In the second and third cases, a Belavin-Drinfeld cohomology can be introduced which enables one to classify Lie bialgebras on sl(n,F), up to gauge equivalence. The Belavin-Drinfeld untwisted and twisted cohomology sets associated to an r-matrix are computed.

Nyckelord: quantum group, Lie bialgebra

Denna post skapades 2015-10-29. Senast ändrad 2015-11-30.
CPL Pubid: 225018


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur