CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comparative Study of a Multi-MW High Power Density DC Transformer with an Optimized High Frequency Magnetics in All-DC Offshore Wind Farm

Mohammad Amin Bahmani (Institutionen för energi och miljö, Elteknik) ; Torbjörn Thiringer (Institutionen för energi och miljö, Elteknik) ; Ali Rabiei (Institutionen för energi och miljö, Elteknik) ; Tarik Abdulahovic (Institutionen för energi och miljö, Elteknik)
IEEE Transactions on Power Delivery (0885-8977). Vol. 31 (2016), 2, p. 857-866.
[Artikel, refereegranskad vetenskaplig]

In this paper, the design of a 1/30 kV, 10 MW modular isolated DC-DC converter is presented. The design and optimization of a high frequency transformer as the key part of such a converter is addressed. Efficiency curves for different semiconductors and frequencies are presented in order to find an optimum frequency enabling adequate transformer volume reduction with a suitable compromise with the converter efficiency. It was found that for this voltage level and size, it is no point to go above 6 kHz from the transformer perspective since the isolation requirement leads to that the size is not reduced much more for even higher frequencies. At 5 kHz, the efficiency of the transformer having a nanocristalline core reached 99.7% while the power density was about 22 kW/l. For the whole DC-DC converter, an efficiency of 98.5% was reached at 5 kHz switching frequency using SiC MOSFETs as switching elements while the efficiency when using IGBTs reached 97.2% at the same frequency.

Nyckelord: DC-DC power converters, high-frequency transformers



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2015-10-28. Senast ändrad 2016-04-29.
CPL Pubid: 224982

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för energi och miljö, Elteknik (2005-2017)

Ämnesområden

Energi
Elkraftteknik

Chalmers infrastruktur